Tableaux de variations (2 sens)

Voici son code :

\begin{center}
\begin{variations}
x       &\mI&   &  0  &   &\pI\\
\filet
f'(x)   &   & + &  0  & - &   \\
\filet
\m{f(x)}&\mI&\c &\h{5}&\d &\mI\\
\end{variations}
\end{center}

Voici son code :

\begin{center}
\begin{variations}
x       &   & 0 &   &  4  &   &\pI\\
\filet
f'(x)   &\bg&   & + &  0  & - &   \\
\filet
\m{f(x)}&\bg&\mI&\c &\h{5}&\d &\mI\\
\end{variations}
\end{center}

Voici son code :

\begin{center}
\begin{variations}
x       &\mI    &   & 0 &   &\pI    \\
\filet
f'(x)   &       & - & 0 & + &       \\
\filet
\m{f(x)}&\h{\pI}&\d &-3 &\c &\h{\pI}\\
\end{variations}
\end{center}

Voici son code :

\begin{center}
\begin{variations}
x       &   &   0   &   & 4 &   &\pI    \\
\filet
f'(x)   &\bg&       & - & 0 & + &       \\
\filet
\m{f(x)}&\bg&\h{\pI}&\d &-3 &\c &\h{\pI}\\
\end{variations}
\end{center}

Voici son code :

\begin{center}
\begin{variations}
x       &\mI&   &       & 0 &   &   &\pI    \\
\filet
f'(x)   &   & + &       &\bb&   & + &       \\
\filet
\m{f(x)}&\mI&\c &\h{\pI}&\bb&\mI&\c &\h{\pI}\\
\end{variations}
\end{center}

Voici son code :

\begin{center}
\begin{variations}
x       &\mI&   &       & 0 &       &   &\pI\\
\filet
f'(x)   &   & + &       &\bb&       & - &   \\
\filet
\m{f(x)}&\mI&\c &\h{\pI}&\bb&\h{\pI}&\d &\mI\\
\end{variations}
\end{center}

Voici son code :

\begin{center}
\begin{variations}
x       &\mI    &   &   & 0 &   &   &\pI    \\
\filet
f'(x)   &       & - &   &\bb&   & + &       \\
\filet
\m{f(x)}&\h{\pI}&\d &\mI&\bb&\mI&\c &\h{\pI}\\
\end{variations}
\end{center}

Voici son code :

\begin{center}
\begin{variations}
x       &\mI    &   &   & 0 &       &   &\pI\\
\filet
f'(x)   &       & - &   &\bb&       & - &   \\
\filet
\m{f(x)}&\h{\pI}&\d &\mI&\bb&\h{\pI}&\d &\mI\\
\end{variations}
\end{center}